

Badminton Shuttlecock Collector

June 26, 2018

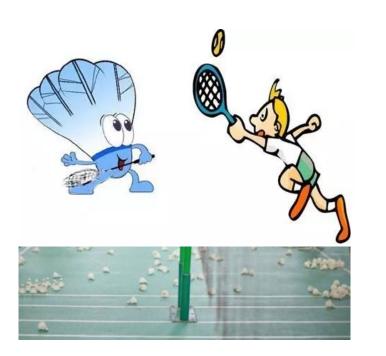

Department of Electrical and Computer Engineering

Advisor: Professor Tessier

Team Members

Advisor Prof. Tessier

Daniel Wang


- Team leader
- Software Design
- Hardware Design

Charlotte Wang

- Hardware Design
- > Website Design

Problem Statement

- Many people choose professional gymnasiums to practice badminton with family, friends and coworkers.
- Gymnasiums pay salary to staff to collect shuttlecocks.
- The main ways to collect and sort shuttlecocks are manual or semi-automatic.
- To save human cost and improve sorting efficiency, automatic robots would be welcome.
- With X Bot, the shuttlecocks on the floor will be sorted automatically with high efficiency and the sorted shuttlecocks will be transported to assigned collection centers.

Current Design Alternatives

Manual Collection:

Collection is relatively slow

Used for individuals rather than professional gymnasiums

Shuttlecocks are transferred to collection points manually

Design Alternatives

Handsome Tiger Collector:

https://item.taobao.com/item.htm?spm=a230r. 1.14.228.359358e4SvqhpK&id=554389963439&ns=1&ab bucket=15#detail

- Manual collection and sorting
- Product life cycle is short
- Cost: RMB75.00

Design Alternatives

Aisenwei Collector:

https://item.taobao.com/item.htm?spm=a230r. <u>1.14.200.359358e4SvqhpK&id=551518506597&ns=1&abbucket=</u> <u>15#detail</u>

- Collect without sorting
- Slow, used with a broom
- short life cycle
- ▶ Cost: RMB88.00

Design Alternatives

Semi-automatic Collector:

https://v.youku.com/v_show/ id_XMTgxNDEzNTE3Mg==.html?spm=a2h0k. 11417342.soresults.dposter

- Semi-automatic
 - Collect without sorting

What can we do with X - Bot?

- Automatically collect and sort shuttlecocks with high efficiency
- Transmit shuttlecocks to assigned places via APP (application in cell phone)
- Useful for both individuals and gymnasiums

Requirements Analysis

Requirements

- Pick up & Transmit

Pick up shuttlecocks and transmit them automatically to collection centers with APP (application) in cell phone to control the robot (in MDR)

- Capture images

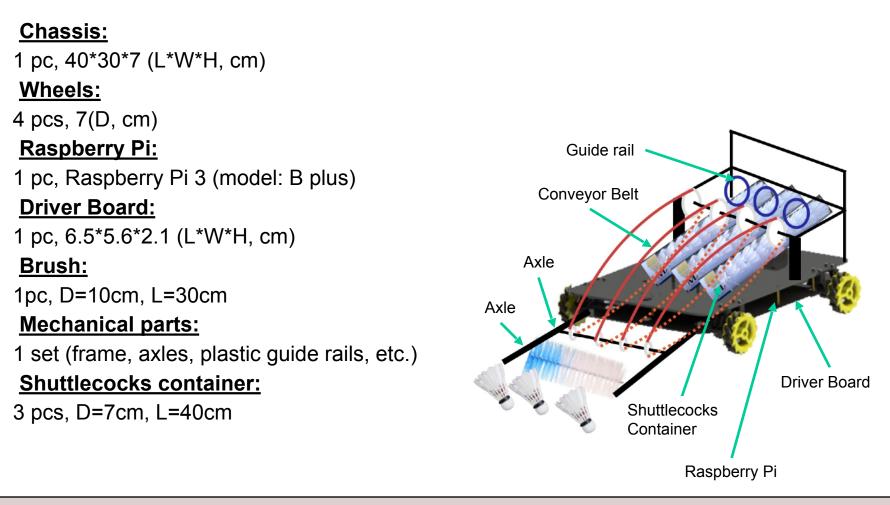
Capture images of shuttlecocks and the courts to pick up the balls automatically with the help of camera (in FDR)

- Data Analysis & Processing (in FDR)

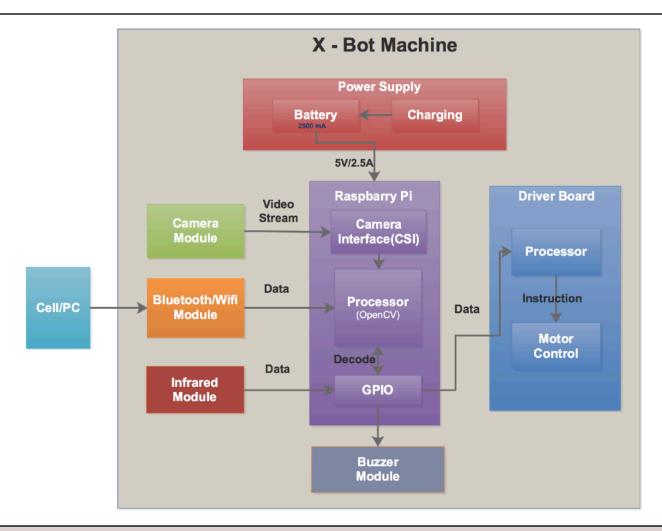
- 1) Collect all shuttlecocks in shortest path
- 2) Identify the shuttlecocks in 360 degree view
- 3) Detect whether the collecting container is full
- 4) Move all-around

- Interfaces

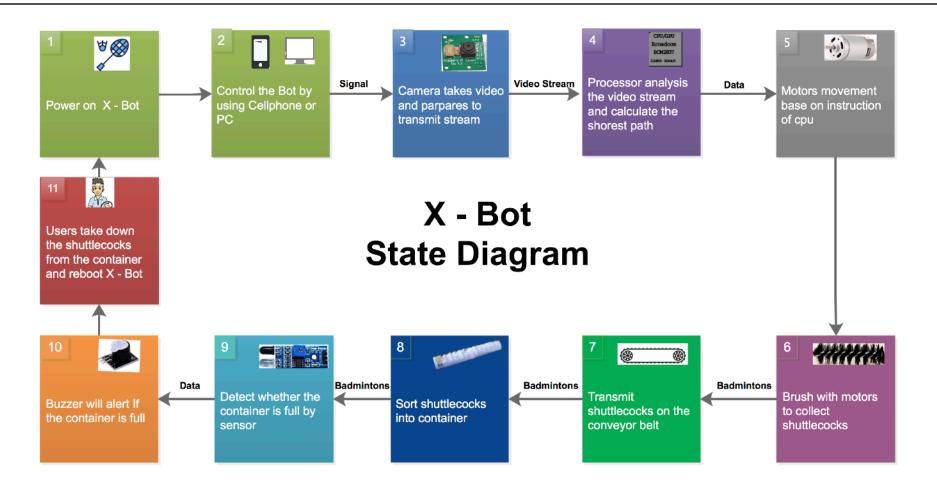
Bluetooth, WI-FI (in FDR)


- <u>Battery</u>

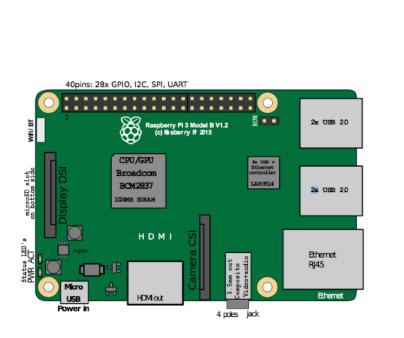
1) Chargeable


2) Can use 1 hour after charging

Specifications



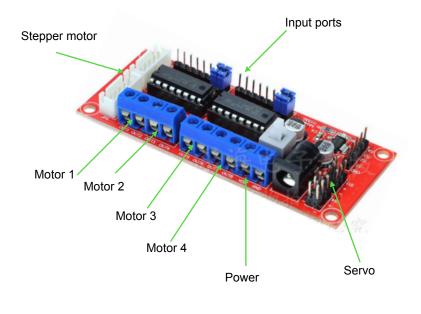
Block Diagram


Department of Electrical and Computer Engineering

State Diagram

Department of Electrical and Computer Engineering

Parts: Microcontroller


Raspberry Pi 3 Model B+

Specifications

No.	Generation	Description
1	Architecture	ARMv8-A (64/32-bit)
2	CPU	1.4 GHz 64-bit quad-core ARM Cortex-A53
3	Console	Adding a USB network interface via tethering or a serial cable with optional GPIO power connector
4	Memory	1GB (shared with GPU)
5	On-board network	IEEE 802.11.b/g/n/ac Wireless LAN; Bluetooth 4.2, BLE; Ethernet 300Mbps
6	USB 2.0 Ports	4 (via on-board 5-port USB hub)
7	Size	85.60 mm × 56.5 mm × 17mm
8	Power source	5 V via MicroUSB or GPIO header
9	Environment	0-50℃

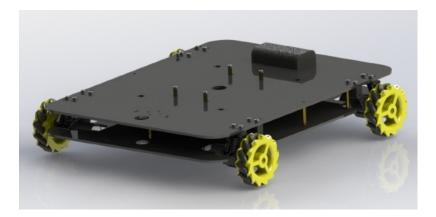
Parts: Driver Board

Model: L293D

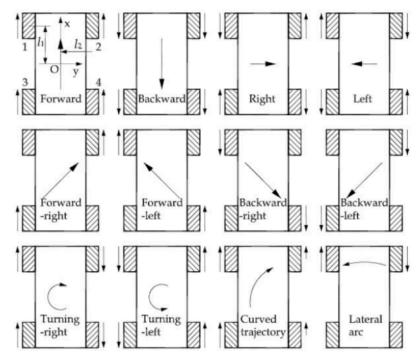
Specifications

No.	Generation	Description
1	Servo ports	4
2	Motor ports	4
3	Stepper motor	2
5	Voltage	5V~16V
6	Size	37mmx90mm

Parts: Camera



Parts: Bot movement



Why use Mecanum wheels ?

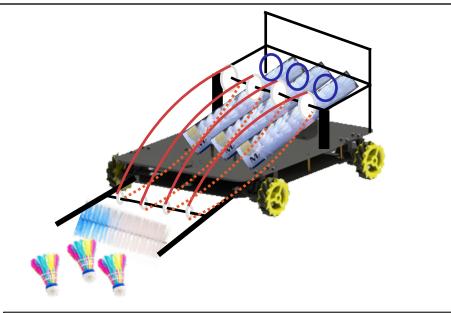
- Flexibility
- Move all around
- Save energy

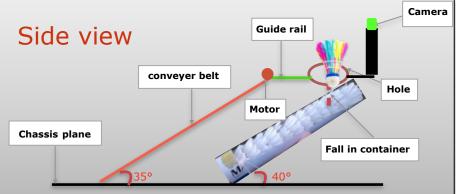
Mecanum Wheels

Department of Electrical and Computer Engineering

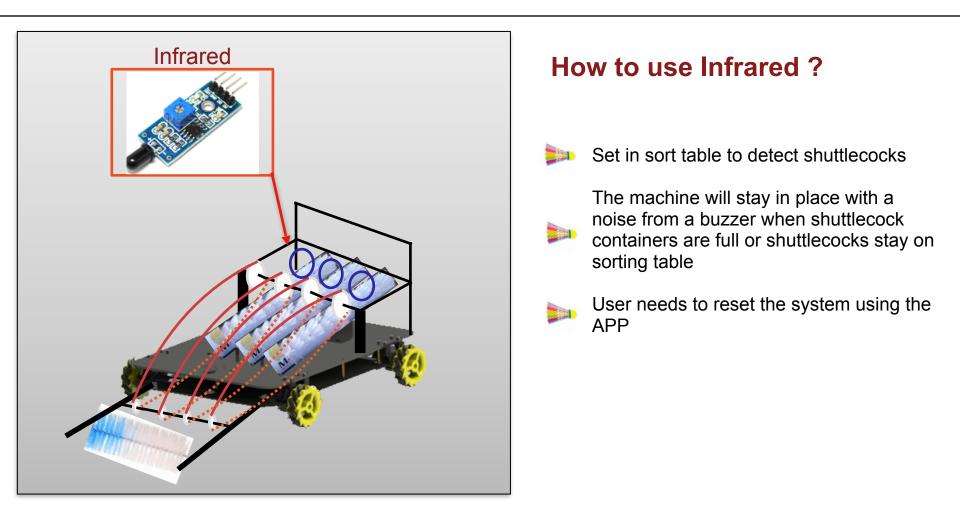
Parts: Sorts Plane

Rational


-				
-		-		
_	-	1	2	
	-			
1.00	-			
-		-		
-				


The shuttlecocks will bounce on the strings from bottom of brush

The strings deliver shuttlecocks to sorting table by guide rails



The shuttlecocks are sorted into the containers from the holes of sorting table

Parts: Sensors

Parts: Battery

How to select the battery ?

No.	Main Parts	Quantity	MAX electric current per unit	TTL electric current
1	Raspberry pi	1	500 mA	500 mA
2	Driver board (L293D)	1	36 mA	36 mA
3	Motor(N20)	6	400 mA	2400 mA
4	TTL requirement			2936 mA

- Output : 5.1V ±0.1V

APP: Control Plane

How to control the X-Bot?

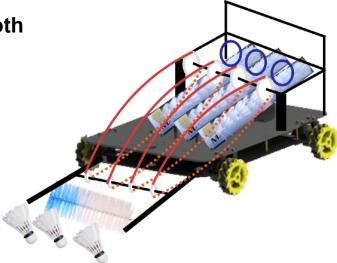
Five buttons

- Start
- Stop
- Move
- Deliver
- Reset
- Connection: Bluetooth/Wifi

Parts List & Budget

No.	Item	Quantity	Cost(CNY)
1	Raspberry Pi 3	1	269
2	Driver board	1	100
3	Camera	1	100
4	Tyres	4	200
5	Motor	6	300
6	Chassis	1	50
7	Infrared module	1	19.5
8	Bluetooth module	1	50
9	WIFI module	1	30
10	Lithium battery + Packs +Charge	1	200
11	Pulley for string	6	18
12	String	3	5
13	Iron shelf	4	50
14	Badminton of bucket	2	50
15	Brush (DIY)	1	10
TTL			1441.5

MDR Deliverables


Physical X - Bot

- Function

- 1) Pick up a few shuttlecocks
- 2) Deliver them to a container
- 3) Transfer shuttlecocks to assigned places
- Design

As shown in the image on the right

- App (application) in cell phone to control via Bluetooth
- Battery:
 - Energy calculation
 - Charging method
 - Current: 2500mA

Q & A

Department of Electrical and Computer Engineering

